Stationary Solutions for the Cahn-hilliard Equation

نویسندگان

  • JUNCHENG WEI
  • MATTHIAS WINTER
چکیده

We study the Cahn-Hilliard equation in a bounded domain without any symmetry assumptions. We assume that the mean curvature of the boundary has a nongenerate critical point. Then we show that there exists a spike-like stationary solution whose global maximum lies on the boundary. Our method is based on Lyapunov-Schmidt reduction and the Brouwer fixed-point theorem. Résumé. Nous étudions l’équation de Cahn et Hilliard dans une domaine ouverte sans supposer aucunes conditions de symétrie pour la domaine. Nous supposons que la courbature moyenne sur la frontière a un point critique non dégeneré. Nous montrons qu’il existe une solution stationnaire avec un pic qui atteint son maximum sur la frontière de la domaine. Notre méthode utilise la réduction de Lyapunov et Schmidt et le théorème du point fixe de Brouwer. (Titre: Solutions stationnaires pour l’équation de Cahn et Hilliard).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Analysis for Stationary Solutions of the Cahn–Hilliard Equation in R

We consider the spectrum associated with three types of bounded stationary solutions for the Cahn–Hilliard equation on Rd, d ≥ 2: radial solutions, saddle solutions (only for d = 2), and planar periodic solutions. In particular, we establish spectral instability for each type of solution. The important case of multiply periodic solutions does not fit into the framework of our approach, and we d...

متن کامل

2 00 4 Coalescence in the 1 D Cahn - Hilliard model

We present an approximate analytical solution of the Cahn-Hilliard equation describing the coalescence during a first order phase transition. We have identified all the intermediate profiles, stationary solutions of the noiseless Cahn-Hilliard equation. Using properties of the soliton lattices, periodic solutions of the Ginzburg-Landau equation, we have construct a family of ansatz describing c...

متن کامل

Stationary Solutions of Driven Fourth- and Sixth-Order Cahn--Hilliard-Type Equations

New types of stationary solutions of a one-dimensional driven sixthorder Cahn-Hilliard type equation that arises as a model for epitaxially growing nano-structures such as quantum dots, are derived by an extension of the method of matched asymptotic expansions that retains exponentially small terms. This method yields analytical expressions for far-field behavior as well as the widths of the hu...

متن کامل

On the Stationary Cahn-hilliard Equation: Interior Spike Solutions

We study solutions of the stationary Cahn-Hilliard equation in a bounded smooth domain which have a spike in the interior. We show that a large class of interior points (the “nondegenerate peak” points) have the following property: there exist such solutions whose spike lies close to a given nondegenerate peak point. Our construction uses among others the methods of viscosity solution, weak con...

متن کامل

Spectral Analysis of Stationary Solutions of the Cahn–Hilliard Equation

For the Cahn–Hilliard equation on R, there are precisely three types of bounded non-constant stationary solutions: periodic solutions, pulse-type reversal solutions, and monotonic transition waves. We study the spectrum of the linear operator obtained upon linearization about each of these waves, establishing linear stability for all transition waves, linear instability for all reversal waves, ...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007